
Symbols and Packages

11-22 COOL User’s Manual

Lines 3 and 4 define a standard preprocessor macro that, given an index, a symbol name,
a type, and a value, returns an offset into a table of symbol objects. Line 5 implements a
macro to create or return a symbol object in the package by using DEF-
PACKAGE_SYMBOL. Lines 7-10 implement macros to add or return the value and
named property from a symbol in the package. Note that these are EXPANDING mac-
ros, which means their arguments are first expanded before being passed to DEF-
PACKAGE_SYMBOL. Finally, lines 11 and 12 declare two external objects, a pointer
to the global package object name##_package_g, and an array of symbol objects
name##_symbols[].

Line 15 starts the implementation macro that takes two arguments: the first, name, speci-
fies the name of the package; the second, file, specifies the file in which the symbols
for the package are to be maintained. Line 16 includes the symbol file specified. Line 17
determines if any symbols are actually defined for the package using name##_count
previously discussed. If there are symbols defined, an array of symbols is created. Lines
20-25 define macros to create and update a symbol object and its value and property list
in the package at run time.

Lines 26-28 define a package initializer function. Line 29 creates a global static package
object name##_package_s whose constructor takes a size and a pointer to a package
initializer function. The C++ 2.0 language specification guarantees that the constructor
of a global static object will be invoked before calling main. The package constructor
calls the package initializer function to create and initialize the symbol objects. Finally,
line 30 creates a global pointer name##_package_g pointing to the newly created pack-
age object.

The COOL symbol and package facilities provide an efficient and flexible programmer
interface to the slightly more complicated DEFPACKAGE and DEF-
PACKAGE_SYMBOL macros. The COOL macro capabilities, combined with the
features of C++ and the rules for static object constructor invocation, allow for a direct,
although slightly complicated, implementation. The once_only_package, enumera-
tion_package, and text_package macros are implemented in a similar manner. Under
most circumstances, a programmer should be able to make use of these interfaces and
never need to delve into the details discussed above. However, should a custom package
macro be necessary for a specific application, a similar approach is appropriate.

Symbols and Packages

11-21COOL User’s Manual

The symbol_package macro is implemented with the COOL macro facilities and can
be found in the ~COOL/Package/defpackage.h header file. The relevant portion of this
file is shown below:

 1 MACRO symbol_package (name, file, REST: options) {

 2 DEFPACKAGE name file length = name##_count, options

 3 #define expand_##name(index, symbol, type, value) \

 4 (&name##_symbols[index])

 5 MACRO name (symbol) {

 6 DEFPACKAGE_SYMBOL (name, #symbol,,,, expand_##name) }

 7 MACRO EXPANDING DEF_##name (symbol, type, value) {

 8 DEFPACKAGE_SYMBOL (name, #symbol, type, value,,) }

 9 MACRO EXPANDING DEF_##name##_PROPERTY (symbol, property, type, value) {

10 DEFPACKAGE_SYMBOL (name, #symbol, type, value, property,) }

11 extern struct Package* name##_package_g;

12 extern Symbol name##_symbols[];

13 }

14 /* Runtime initialization of a symbol_package */

15 MACRO implement_symbol_package (name, file) {

16 #include file

17 #if name##_count > 0

18 Symbol name##_symbols[name##_count];

19 #endif

20 #define MAKE_##name##_SYMBOL (index, symbol) \
21 pkg–>put (symbol, name##_symbols[index]);

22 MACRO SET_##name##_VALUE (index, type, val) {

23 name##_symbols[index].set ((Generic*) val);}

24 MACRO SET_##name##_PROPERTY (index, prop, type, value) {

25 name##_symbols[index].put(prop, (Generic*) value);}

26 void name##_package_initializer (Package* pkg) {

27 name##_DEFINITIONS (MAKE_##name##_SYMBOL, SET_##name##_VALUE,

SET_##name##_PROPERTY)

28 }

29 static Package name##_package_s(name##_count*2,name##_package_initializer);

30 Package* name##_package_g = &name##_package_s;

31 }

A symbol package is created and implemented with two macros analogous to the decla-
ration and implementation parts of a parameterized template. The symbol_package
macro creates macros for adding and manipulating symbol objects. The imple-
ment_symbol_package macro is used in the symbols.C file and actually creates the
package object. Lines 1 through 13 contain the declarative macro and lines 14 through
31 contain the implementation macro.

Line 1 starts the declarative macro and takes three arguments. The first, name, specifies
the name of the package. The second, file, specifies the file in which the symbols for
the package are to be maintained. The third is a REST: argument and may contain any
number of options for DEFPACKAGE. Line 2 invokes DEFPACKAGE with the
package name and file arguments, and maintains the number of symbols in the package
in the preprocessor symbol name##_count, where the package name name is used as a
prefix to the identifier _count.

Symbols and Packages

11-20 COOL User’s Manual

Interfacing to the 11.15 Under some circumstances, it might be necessary for an application

SYM Package to interface to the global COOL symbol package SYM to reference type information

automatically created and stored there by various macros. This could be the case in an
application-specific library that must have certain knowledge about all the possible
types available in an application, such as an inference engine where certain user-defined
objects can implement specific firing rules. The default firing rule for each type of ob-
ject could be represented as the value of the symbol representing the object type.

In the following code fragment, a function is defined that processes a list of string names
containing the names of all the rule types in a particular rules-based inference engine.
These names came from a rules grammar file generated by a translator that runs over the
user’s knowledge-base-specific rules. The character string names match class names
defined within the user’s application and so have a corresponding symbol entry in the
COOL global symbol package. This function finds a matching symbol for each name
and attaches a default firing rule as the value of the symbol and returns the number of
rules processed. Other rules may be added to the property list of the symbol at run time.

 1 #include<COOL/Package.h> // COOL Package header file

 2 #include<COOL/List.h> // COOL List header file

 3 #include<COOL/String.h> // COOL String header file

 4
 5 DECLARE List<String>; // Declare list of strings

 6 extern Package* SYM_package_g; // Pointer to global SYM

 7 int process_rules (List<String>& names, Generic* default_rule) {
 8 int i; // Counter

 9 Symbol* temp; // Temporary variable

10 for (i=0, names.reset(); names.next(); i++) { // For each rule name

11 temp = SYM_package_g–>get (names.value ()); // Get symbol for type

12 temp–>set (default_rule); // Set default firing rule

13 }
14 return i; // Return rule count

15 }

Lines 1 through 3 include the COOL header files for the Package, List, and String
classes. Line 5 declares the type of a list of string objects. Line 6 contains an external
reference to the pointer to the global SYM package object. Lines 7 through 12 define the
function process_rules that takes two arguments: a reference to a list of strings that are
the names of all rule types in the inference engine and a pointer to a default firing rule
object. Lines 8 and 9 define two temporary variables. Lines 10-13 contain a loop that
uses the current position iterator of the list object to move through all the strings in the
list.

Line 11 gets the value of the string at the current position and uses the get member func-
tion of the package object to look up the character string name and return a pointer to the
corresponding symbol object. Line 12 uses the set member function of the symbol ob-
ject to set the value to a pointer to the default firing rule function. This loop continues
until all names have been scanned and line 14 returns the number found.

Symbol Package 11.16 The symbol_package macro discussed previously is implemented

Implementation with the DEFPACKAGE and DEFPACKAGE_SYMBOL macros and the COOL

MACRO facility. This section discusses the implementation details of the sym-
bol_package macro and should be of interest to programmers who wish to create their
own specialized packages or more fully understand the macro capabilities. Others may
skip these details.

Symbols and Packages

11-19COOL User’s Manual

15 MACRO MY_SYM_DEFINITIONS(define_macro, value_macro, property_macro) {

16 define_macro (0, ”sym1”)

17 value_macro (0, String, new String(”Greetings!”))

18 property_macro(0, (&MY_SYM_symbols[5]), Symbol, (&MY_SYM_symbols[2]))

19 property_macro(0, (&MY_SYM_symbols[1]), Symbol, (&MY_SYM_symbols[2]))

20 define_macro (1, ”value–type”)

21 define_macro (2, ”String”)

22 define_macro (3, ”sym2”)

23 define_macro (4, ”Creation Time”)

24 define_macro (5, ”Property example”)

25 }

Lines 1 through 12 contain the standard header commentary information, including the
package creation specifications placed at the top of every symbol file. Line 13 is impor-
tant in that the package and symbol macros use this as a marker for placement in the file.
Line 14 is a preprocessor constant reflecting the number of symbols in the package.
Line 15 contains a MACRO to create the symbol package. Lines 16 through 25 contain
macros defining the symbols and their values and properties added in the program.

Under most circumstances, the programmer need never examine this file. It is presented
here merely as an aid in understanding the COOL symbol and package system. Al-
though not included here, the customized symbols.C file (always the last file to compile
in any COOL application) must include an implement macro for the MY_SYM package, as
was shown earlier for the text package example. This file (symbols4.C) can be found in
the COOL/examples subdirectory.

ONCE_ONLY 11.14 The ONCE_ONLY macro (discussed in Section 10, Macros) allows

Package an application to control the expansion of a section of code. This might be useful, for

example, when a table needs to be initialized once and once only when a constructor for
some class is first called. This could be accomplished by having a static flag for the
class set on the first call, with later calls checking the flag and skipping the initialization.
The ONCE_ONLY macro, however, provides an intelligent and more efficient condi-
tional compilation feature. It uses the Once_Only_Package to control the expansion and
compilation of code only once in a program.

When a ONCE_ONLY macro invocation is encountered for the first time, a symbol is
created with a name related to the macro call. A value is created that is a character string
representing the file name where the symbol is first defined. This symbol is added to the
Once_Only_Package and the body of code expanded. The next time the same
ONCE_ONLY macro is encountered, a symbol name is created and looked up in the
Once_Only_Package object. If the value is the same as the current file (available from
__FILE__ in the preprocessor), the body of code is expanded, and ready to be compiled.
However, if the symbol has a different value (that is, the macro invocation is in a differ-
ent file), the code is not expanded and thus, not compiled.

The symbol name specified in the macro ensures that a specified body of code expands
and compiles only once across an entire source base. These symbol names and the
Once_Only_Package are not available for general use other than through this macro. It is
included here to provide you with another example of the use and flexibility of COOL
symbols and package objects.

Symbols and Packages

11-18 COOL User’s Manual

Lines 1 and 2 include the COOL Date_Time.h and Package.h header files. Line 3 uses
the symbol_package macro to create a package whose name is MY_SYM and whose val-
ues are stored in the file my_sym.p somewhere on the include search path for this appli-
cation. Note that this file must be initially created by the programmer, since the COOL
package system cannot know which directory the file should be placed. Line 4 adds a
value to the first symbol in the package with the DEF_MY_SYM macro. Note that this
macro has the name of the package concatenated to form a package-specific macro. This
was created by the macro in line 3. Similarly, line 5 adds a property to the first symbol in
the package with the DEF_MY_SYM_PROPERTY macro. Line 7 adds a new symbol
to the package. Lines 8-10 output the name and value of the first symbol in the package.
Line 11 changes the value added at compile time to a new string added at run time and
line 12 outputs this new value.

Lines 13 and 14 create a date/time object initialized with the local time. Line 15 creates
a second symbol for the package and lines 16 and 17 output its name. Line 18 adds the
named property Creation Time with a value of a pointer to the date/time object instan-
tiated in line 13 to the second symbol sym2 in the package. Line 19 outputs the newly
updated symbol and line 20 ends the program with a successful completion code.

The following shows the output from the program:

 1 First symbol is sym1

 2 Also available via MY_SYM(sym1): sym1

 3 sym1 Greetings! [value–type String]

 4 sym1 value is now Goodbye!

 5 Second symbol is sym2

 6 Also available via MY_SYM(sym2): sym2

 7 sym2 [Creation Time United States 01–19–1990 07:46:07 US/Central]

Lines 1 and 2 output the name of the first symbol in the package. Lines 3 and 4 output
the initial and new value and property lists for this symbol. Lines 5 and 6 output the
name of the newly created second symbol object, and line 7 outputs the name, value, and
property list of this symbol.

The COOL package system creates and maintains the symbol package file my_sym.p
shown below:

 1 /*

 2 * DEFPACKAGE MY_SYM definitions file.

 3 *

 4 * This file is automatically generated by the cpp DEFPACKAGE facility

 5 * DO NOT EDIT THIS FILE, because it may be re–written the next time CPP

 6 * is run.

 7 *

 8 * This file is for:

 9 * DEFPACKAGE MY_SYM <MY_SYM> name=my_sym.p,

10 * count=MY_SYM_count, case=sensitive,

11 * start=0, increment=1, template=0, max=0

12 */

13 /* WARNING: Do not remove this line */

14 #define MY_SYM_count 6

Symbols and Packages

11-17COOL User’s Manual

Name: symbol_package — Constant symbol package macro with run time update

Synopsis: symbol_package (name, file, REST: options)

name Specifies the name of the package.

file The file located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACKAGE options

Macros: name (sym)
Defines the symbol sym in the package name if it is undefined and returns a pointer
to the symbol entry.

DEF_name (sym, type, value)
Defines a value of the specified type to the symbol sym in the package name.

DEF_name_PROPERTY (sym, property, type, value)
Defines a property of the specified type and value to the symbol sym in the package
name.

Symbol Package 11.13 The following program uses the symbol_package macro to create a

Example symbol package. This example shows the manipulation of symbols, their associated

values, and properties in a symbol package at both compile time and run time. Two
symbols are added at compile time. One of these has a value and property specified at
compile time. The other has its value and property fields assigned at run time.

 1 #include <COOL/Date_Time.h> // Include COOL Date/Time header

 2 #include <COOL/Package.h> // Include COOL Package header

 3 symbol_package (MY_SYM, ”my_sym.p”); // Create symbol package

 4 DEF_MY_SYM (sym1, String, new String(”Greetings!”));

 5 DEF_MY_SYM_PROPERTY (sym1, MY_SYM (Prop. example), Symbol, MY_SYM (String));

 6 int main (void) {

 7 Symbol *s1 = MY_SYM (sym1); // Lookup first symbol

 8 cout << ”First symbol is ” << s1–>name() << ”\n”; // Output symbol name

 9 cout << ”Also available via MY_SYM(sym1): ” << MY_SYM(sym1)–>name()<<”\n”;

10 cout << s1 << ”\n”; // Output value/property list

11 s1–>set (new String (”Goodbye!”)); // Add new value

12 cout << ”sym1 value is now ” << s1–>value () << ”\n”; // Output value

13 Date_Time d1 (US_CENTRAL, UNITED_STATES); // Create date/time object

14 d1.set_local_time (); // Set to current date/time

15 Symbol* s2 = MY_SYM (sym2); // Create new symbol object

16 cout << ”Second symbol is ” << s2–>name() << ”\n”;// Output symbol name

17 cout << ”Also available via MY_SYM(sym2): ” << MY_SYM(sym2)–>name()<<”\n”;

18 s2–>put (MY_SYM (Creation Time), &d1); // Add property

19 cout << s2 << ”\n”; // Output runtime symbol

20 return 0; // Return valid code

21 }

Symbols and Packages

11-16 COOL User’s Manual

To complete this example, the symbols.C file must be changed slightly to implement
the text package contained in the file my_text2.p with the new properties. The follow-
ing shows the output of the program:

 1 1st message: Hi! What’s up?

 2 2nd message: See you later

 3 1st message: Howdy! What y’all up to?

 4 2nd message: Y’all come back now, ya’ heah?

 5 1st message: Hi! What’s up?

 6 2nd message: See you later

Lines 1 and 2 output the value of the two text symbols added to the package. Lines 3 and
4 output the value of the Southern property for each symbol. Note, however, that the
symbols used in the program did not have to be changed to support a different language.
Lines 5 and 6 output the value of the symbols back in the default language.

Symbol 11.12 The symbol_package macro creates and accesses a Package object

Package containing symbols whose values can be assigned at run time. Symbols in the sym-

bol_package are pointers to Symbol objects. Symbols known and declared at compile
time are interned in a table. The symbol package macro automatically collects these
symbols from across the source base and maintains a single database in the specified
header file. Additional symbols can be added at run time. Symbols have values and
properties whose initial values can be declared. If not specified, the values and proper-
ties are nonexistent; that is, no space other than storage for a NULL pointer is allocated
for them. The global Package object created has the name name_package_g, where
name is the name of the package specified in the macro invocation.

NOTE: A symbol package is stored in a file located somewhere on the include directory
search path. This header file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command.

The symbol_package macro defines three macros for adding, updating, and retrieving
symbols in the package. The first adds new symbols or retrieves existing symbols. The
second adds a value of a specified type to an existing symbol entry. The third adds a
named property of the specified type to an existing symbol entry.

The SYM symbol package is created with the symbol_package macro and is the COOL
global type package. It stores the type and inheritance hierarchy for all classes that in-
herit from the Generic class to support run time type and object query. Each such class
is represented by a symbol that may have various values and properties. All type infor-
mation is accessed and manipulated by the macros and functions discussed in Section
12, Polymorphic Management.

Symbols and Packages

11-15COOL User’s Manual

 1 #include <cool/Package.h> // Include COOL Package header

 2 text_package (MY_TEXT, ”my_text2.p”); // Create text package

 3 int main (void) {

 4 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 5 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 6 set_text_language (SYM (Southern), &MY_TEXT_entries[0]);

 7 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 8 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 9 set_text_language (NULL, &MY_TEXT_entries[0]);

10 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

11 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

12 return 0; // Return valid success code

13 }

The text package contained in the file my_text2.p is a copy of the previous example
with the addition of a Southern property for each symbol. To add such properties, the
programmer must edit the file and add the appropriate translation for each symbol entry,
as shown below.

 1 /*

 2 * DEFPACKAGE MY_TEXT definitions file.

 3 *

 4 * This file is automatically generated by the cpp DEFPACKAGE facility

 5 * DO NOT EDIT THIS FILE, because it may be re–written the next time CPP

 6 * is run.

 7 *

 8 * This file is for:

 9 * DEFPACKAGE MY_TEXT <MY_TEXT> name=my_text.p,

10 * count=MY_TEXT_count, case=sensitive,

11 * start=0, increment=1, template=0, max=0

12 */

13 /* WARNING: Do not remove this line */

14 #define MY_TEXT_count 2

15 MACRO MY_TEXT_DEFINITIONS(define_macro, value_macro, property_macro) {

16 define_macro (0, ”Hi! What’s up?”)

17 property_macro(0, Southern, char*, ”Howdy! What y’all up to?”)

18 define_macro (1, ”See you later”)

19 property_macro(1, Southern, char*, ”Y’all come back now, ya’ heah?”)

20 }

Lines 1 through 14 are identical to the previous package file. Lines 15 through 20 define
the symbols contained in this package. Lines 16 and 18 are the same as before and con-
tain macros to create the two text symbols. Lines 17 and 19 have been added by the
programmer to establish a Southern property for each text symbol. Note that the first
value of each definition and property macro is an integer. These must match to ensure
correct package setup.

NOTE: A package file is recreated every time the compilation process is performed.
Any changes made to support translations should be kept in a separate file and merged
into the package file after the compilation is complete.

Symbols and Packages

11-14 COOL User’s Manual

13 /* WARNING: Do not remove this line */

14 #define MY_TEXT_count 2

15 MACRO MY_TEXT_DEFINITIONS(define_macro, value_macro, property_macro) {

16 define_macro (0, ”Hi! What’s up?”)

17 define_macro (1, ”See you later”)

18 }

Lines 1 through 12 contain the standard header commentary information, including the
package creation specifications placed at the top of every symbol file. Line 13 is impor-
tant in that the package and symbol macros use this as a marker for placement in the file.
Line 14 is a preprocessor constant reflecting the number of symbols in the package.
Line 15 contains a MACRO to create the text package. Lines 16 and 17 contain two
macros defining the two symbols added in the program.

The following textual insertion shows the customized contents of the generic sym-
bols.C file which is always the last file to be compiled in any application using COOL
components. This file is responsible for including any package definition files created
during the compilation of other program source files. It must always be last to ensure
that all symbols have been added to the package before it is implemented. The program-
mer need never alter the contents of this file unless an application-specific package has
been created, as is the case with this example program.

// This file must be compiled and linked with every application utilizing the

// COOL library. The sample makefile shows the procedure for compilation order.

// It is important that this be the last file compiled before the link process

// begins. The constant symbols in the SYM package and ERR_MSG package are

// initialized by invoking the implement macros defined in <COOL/defpackage.h>

 1 #include <COOL/String.h>

 2 #include <COOL/Package.h>

 3 #include <COOL/Properties.h>

 4 implement_symbol_package (SYM, ”sym_package.p”)

 5 implement_text_package (ERR_MSG, ”err_package.p”)

// The next three lines are added to insure that the text and symbol packages

// manipulated by examples 11.11a.C, 11.11b.C, and 11.13.C are allocated and

// initialized, respectively.

 6 implement_text_package (MY_TEXT, ”my_text.p”)

 7 //implement_text_package (MY_TEXT, ”my_text2.p”)

 8 //implement_symbol_package (MY_SYM, ”my_sym.p”)

Lines 1 through 3 include the necessary COOL header files to enable the package and
symbol system to be implemented. Lines 4 and 5 are the default contents of this file and
implement the COOL global symbol and error message packages through two macros.
An application that uses any COOL components must have these two lines compiled in
the last file in the compilation process. Lines 6 through 8 have been added for this and
the next two examples to implement the packages created. Note that lines 7 and 8 are
commented out. The next two examples will create the text and symbol packages re-
ferred to here and will also uncomment the appropriate line.

The second part of this example continues below. In the first example, the attempt to set
the language property for the package to Southern caused two Warning exceptions to
be raised. The continuation of this example will add translations for the Southern lan-
guage property to the text package. The program below is identical to the previous one
except for the name of the file in which the package is stored. Line 2 contains the macro
to create the package, and the file this time is specified as my_text2.p.

Symbols and Packages

11-13COOL User’s Manual

 1 #include <COOL/Package.h> // Include COOL Package header

 2 text_package (MY_TEXT, ”my_text.p”); // Create text package

 3 int main (void) {

 4 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 5 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 6 set_text_language (SYM (Southern), &MY_TEXT_entries[0]);

 7 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 8 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 9 set_text_language (NULL, &MY_TEXT_entries[0]);

10 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

11 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

12 return 0; // Return valid success code

13 }

Line 1 includes the COOL package header file. Line 2 uses text_package to create a
package whose name is MY_TEXT and whose values are stored in the file my_text.p
somewhere on the include search path for this application. Note that this file must be
initially created by the programmer, since the COOL package system cannot know in
which directory the file should be placed. Lines 4 and 5 add two symbols to the text
package. Line 6 attempts to set the language for the text package to Southern, a symbol
interned in the global COOL symbol package SYM (discussed below in the paragraph,
Symbol Package). Lines 7 and 8 print the values of the two symbols for the newly set
language property. Line 9 restores the language property back to its initial value, hacker

english. Lines 10 and 11 output the values of the symbols back in the default language.
Finally, line 12 ends the program with a valid success code.

The following shows the output from the program:

 1 1st message: Hi! What’s up?

 2 2nd message: See you later

 3 Warning: No Southern translation for ”Hi! What’s up?”

 4 Warning: No Southern translation for ”See you later”

 5 1st message: Hi! What’s up?

 6 2nd message: See you later

 7 1st message: Hi! What’s up?

 8 2nd message: See you later

Lines 1 and 2 contain the values of the two symbols as they are added to the text pack-
age. Lines 3 and 4 are warning exceptions raised when the language property for the
package was set to Southern, indicating that the two symbols do not have translations
for this property. As a result, lines 5 and 6 output the same values for the two symbols.
Lines 7 and 8 output the same values with the switch back to the default language. The
COOL package system creates and maintains the text package symbol file my_text.p
shown below:

 1 /*

 2 * DEFPACKAGE MY_TEXT definitions file.

 3 *

 4 * This file is automatically generated by the cpp DEFPACKAGE facility

 5 * DO NOT EDIT THIS FILE, because it may be re–written the next time CPP

 6 * is run.

 7 *

 8 * This file is for:

 9 * DEFPACKAGE MY_TEXT <MY_TEXT> name=my_text.p,

10 * count=MY_TEXT_count, case=sensitive,

11 * start=0, increment=1, template=0, max=0

12 */

Symbols and Packages

11-12 COOL User’s Manual

An application that uses a text package to store all textual information can support mul-
tiple languages through the language property field. All such messages are collected
together in one file by the symbol and package macros. This one file can be edited by the
programmer to change or add alternate translations for each message. The only change
required of the application source code is an initial statement to set the program execu-
tion language. All error messages in COOL are implemented this way to facilitate ports
to other language environments.

Name: text_package — Resource text symbol package macro

Synopsis: text_package (name, file, REST: options)

name Specifies the name of the package.

file The file located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACKAGE options

Macros: name (sym)
Defines the symbol sym in the package name if it is undefined and returns a pointer
to the symbol entry.

Friend Functions: int set_text_language (Symbol* language = NULL,
text_package_entry* package = NULL);

Sets a new language for a text package. The first argument is a symbol representing
the name of the new language, and the second argument is the starting entry in the
package from which to begin language translation. If the language symbol is not
specified, the default language is the original from the program. If the entry point is
not specified, the default is the first symbol in the package. When a package entry
does not have a translation for the specified language, a Warning exception is
raised. This function returns the number of entries in the package for which a trans-
lation does not exist.

Text Package 11.11 The following program uses the text_package macro to create a text

Example resource file that can be maintained across all source files in an application. This exam-

ple is split into two parts. In the first example, two symbols are added to the text pack-
age. The value of a symbol in a text package is identical to the name. Alternate
languages can be supported by adding the appropriate property. An attempt is made to
set the text language property to an unsupported language symbol. Warning exceptions
are raised as a result.

Symbols and Packages

11-11COOL User’s Manual

Line 1 includes the COOL Package.h class header file. Line 2 creates an enumeration
package MY_ENUM whose database is kept in the file my_enum.p somewhere on the in-
clude file search path. This file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command. Lines 4 through 6 add the enumerated symbols Red, Yellow, and
Green to the package and display their respective values. Finally, line 7 returns a valid
successful completion code.

The following shows the output from the program:

MY_ENUM (Red) has a value of 0

MY_ENUM (Yellow) has a value of 1

MY_ENUM (Green) has a value of 2

At first glance, this example doesn’t seem interesting because this is a simple three-line,
one-source file program. However, imagine an application that solves a complex com-
munications problem and requires many flags. A programmer could use the dynamic
COOL Bit_Set class and use an enumerated package of symbols defined across many
files to index the bits in the vector. This will result in a very flexible and efficient (1
bit/flag) implementation that can easily be altered and extended.

Text Package 11.10 The text_package macro is for use in applications that need to create a collec-

tion of symbols with values the same as the symbol name. This is useful for the manipu-
lation of error messages in an application, since the symbol definition file contains a
summary of all the messages. In addition, the message text may be substituted in an-
other language at run time. The text package macro automatically collects text symbols
from across the source base and maintains a single database in the specified header file.

NOTE: A text package is stored in a file located somewhere on the include directory
search path. This header file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command.

Once a package has been created, symbols can be added and retrieved by using the
macro whose name is the same as the package name and whose single argument is the
symbol name. After creating a package, add and retrieve symbols with the package and
symbol names in parentheses. If the symbol in parentheses has not already been added
to the package, it is added and a pointer to the new value returned. If the symbol is al-
ready present in the package, the existing value returns.

The ERR_MSG text package is the COOL global error message package. It stores the
text to all error messages in the COOL class and macro library. The text_package
macro creates the ERR_MSG package. As exceptions are added to the program, a cor-
responding entry is automatically made into the error message package at compile time.
The error message package loads into the symbols.C file and is always the last file com-
piled in an application that uses COOL components. This ensures that all symbol values
have been collected up over the source base.

Symbols and Packages

11-10 COOL User’s Manual

Enumeration 11.8 The enumeration_package macro is for use in applications that need

Package to create a collection of constant symbols. Enumeration symbols can be used anywhere

that an enumeration type can be used. One reason for selecting symbols in an enumera-
tion package over the standard enum type is that it is easier to add new symbols. The
enumeration package macro automatically collects them from across the source base
and maintains a single database in the specified header file.

NOTE: An enumeration package is stored in a file located somewhere on the include
directory search path. This header file must initially be created as an empty file by the
programmer, since the macro does not know which subdirectory on the include file
search path to select. A convenient mechanism for creating this file on UNIX systems is
the touch(1) command.

Once an enumeration package has been created, symbols can be added and retrieved by
using the package name with the symbol name surrounded by parentheses. If the symbol
contained between parentheses has not already been added to the package, it is added
and the new value is returned. If the symbol is already present in the package, the exist-
ing value is returned.

Name: enumeration_package — Enumerated constant symbol package macro

Synopsis: enumeration_package (name, file, REST: options)

name Specifies the name of the package.

file The file located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACKAGE options.

Macros: name (sym)
Defines the symbol sym in the package name if it is undefined, and returns a pointer
to the symbol entry.

Enumeration 11.9 The following program declares an enumeration package of constant

Package Example symbols that are dynamically added in the program text. The enumerated symbol ob-

jects behave exactly like the built-in enum type in that there is no storage allocated.
However, they have the added benefit that they can be created or added at any time in
any source file in the program. The enumeration package macro ensures that they are
collected in a single database.

 1 #include <COOL/Package.h> //Include COOL Package header

 2 enumeration_package (MY_ENUM, ”my_enum.p”); //Create enum package

 3 int main (void) {

 4 cout << ”MY_ENUM (Red) has a value of ” << MY_ENUM (Red) << ”\n”;

 5 cout << ”MY_ENUM (Yellow) has a value of ” << MY_ENUM (Yellow) << ”\n”;

 6 cout << ”MY_ENUM (Green) has a value of ” << MY_ENUM (Green) << ”\n”;

 7 return 0; //Return valid success code

 8 }

Symbols and Packages

11-9COOL User’s Manual

value

The optional type of the symbol or property.

If you use DEFPACKAGE to create your own specialized package, you will probably
want to write simple macros that expand into calls to manipulate the constant symbol
entries. DEFPACKAGE_SYMBOL writes three other macro definitions to the pack-
age’s definition file for use in a user-application. Each use of the DEF-
PACKAGE_SYMBOL macro generates another macro.
<Package>_DEFINITIONS. This macro expands to use the three macros mentioned
above to define the symbol, set the symbol value, and set the symbol properties. It is
invoked at compile time to create the constant symbol package.

Name: <Package>_DEFINITIONS — Create symbolic C++ constant symbol values

Synopsis: <Package>_DEFINITIONS (define, value, property);

define Macro to be used to create the constant symbol of the form:

define_macro (index, name)

value Macro to be used to set the value of the constant symbol of the form:

value_macro (index, type, value)

property Macro to be used to set a property of the constant symbol of the form:

define_macro (index, property, type, value)

Under most circumstances, the programmer will never have the need to use these mac-
ros. However, for those interested, further information about these macros and their use
in constructing a constant symbol package is available in the documentation and exam-
ples in the ~COOL/Package/defpackage.h header file and the COOL SYM and ERR_MSG

package files in the COOL include subdirectory. Finally, a detailed explanation of the

macros and construction of the symbol_package macro is provided in the paragraph
entitled, Symbol Package Implementation, at the end of this section.

NOTE: Constant symbol packages defined and manipulated by the macros discussed in
this section must have storage allocated for them and code to initialize them at program
startup time. This is managed by the COOL file symbols.C that should be compiled and
linked with every application that uses COOL components. This file does not need to be
changed unless you create your own symbol packages, in which case you should add the
appropriate include and initialization statements (see the examples later in this section).
An automated method for ensuring correct package setup and symbol initialization is
shown in the make file for the example programs for this manual in the COOL/examples

subdirectory.

Symbols and Packages

11-8 COOL User’s Manual

• MACRO enumeration_package (name, file, REST: options)

• MACRO text_package (name, file, REST: options)

• MACRO symbol_package (name, file, REST: options)

• MACRO once_only (name, file, REST: options)

The first three allow the programmer to easily create packages of symbols with varying
levels of sophistication. The fourth is used by the various COOL components to ensure
that certain functions are performed only once during the compilation phase. Complete
information and usage of these macros is discussed later in this section.

Adding Symbols To 11.7 The DEFPACKAGE_SYMBOL macro adds, updates, and retrieves

A Package constant symbols, their values, and properties from a package created with the

DEFPACKAGE macro. DEFPACKAGE_SYMBOL updates the program-wide da-
tabase of constant symbols stored in a file with macro definitions and calls that can be
used in an application to associate data and property lists with compile time symbols. As
with the DEFPACKAGE macro, DEFPACKAGE_SYMBOL is a flexible, low-level
function. The most common types of packages and constant symbol manipulation re-
quirements are made easier by the four macros mentioned above and discussed later in
this section.

Name: DEFPACKAGE_SYMBOL — Symbolic C++ constant symbol manipulation

Synopsis: DEFPACKAGE_SYMBOL (package, symbol, type, value, property,
expander)

package The name of a package to access. Note that the package must have already
been defined with DEFPACKAGE

symbol The name of the symbol to be added, updated, or retrieved

type The optional type of the value

value The optional value of the symbol or property

property The optional name of the property

expander When present, replaces the DEFPACKAGE_SYMBOL invocation with
the result of calling the specified macro expander (index, symbol, type,

value) where:

expander

The expander macro to be called and specified in the invocation of
DEFPACKAGE_SYMBOL.

index
The symbol’s index number.

symbol
The name of the symbol.

type

The optional type of the value.

Symbols and Packages

11-7COOL User’s Manual

Name: DEFPACKAGE — Symbolic C++ constant symbol mechanism

Synopsis: DEFPACKAGE name <path> options

name A character string to be used as a symbol prefix

path The name of an include file where symbol definitions are kept

options One or more of the following comma-separate parameters:

count = identifier

The package file should define the specified preprocessor identifier
whose value is the number of symbols defined in the package.

use_first = int

When nonzero, the value used is the first definition. Redefinition at-
tempts are ignored. This option is used by the ONCE_ONLY macro.

noblank = int

When nonzero, removes all whitespace from symbol names.

case = upper
Converts all symbol name alphabetic characters to uppercase.

case = lower
Converts all symbol name alphabetic characters to lowercase.

case = cap
Capitalizes the first letter of each symbol name, and converts remain-
ing letters to lowercase.

case = sensitive
Preserves the case of the symbol name as used. This is the default
behavior.

start = int

Uses the provided value as the first (that is, starting) point for each
enumerated symbol index. The default is zero.

increment = int

Increments symbol index values by the specified value. The default is
one.

template = int

The value is inclusive-or’ed with the index every symbol value. The
default is zero.

max = int

Generates an error when the number of constant symbols in the pack-
age exceeds the specified value.

While the DEFPACKAGE macro provides great flexibility and versatility in creating a
package of constant symbols for an application, the creation of the most common types
of packages likely to be needed by the programmer is made easier by the following mac-
ros:

Symbols and Packages

11-6 COOL User’s Manual

inline void set_ratio (float ratio);
Updates the growth ratio for this instance of a package to ratio. When a package
needs to grow, the current size is multiplied by the ratio to determine the new size.
If the ratio is negative, an Error exception is raised.

const Symbol& value ();
Returns a reference to the symbol at the current position. If the current position is
invalid, an Error exception is raised.

Friend Functions: Boolean apropos (Package& pkg, const char* name);
Finds the next symbol from the current position in the package pkg whose name is
name. If the symbol is found, this function returns TRUE and sets the new current
position; otherwise, this function returns FALSE.

int complete (Package& pkg, String& name,
Boolean sensitive = FALSE);

Provides completion on name. If sensitive is TRUE, a case-sensitive character
comparison is made; otherwise, a case-insensitive comparison is performed. This
function modifies name to the completed value, returns the count of possible
matches, and sets the current position of the package to the last match found.

Boolean completions (Package& pkg, const char* name,
Boolean sensitive = FALSE);

Finds the next symbol in the package pkg after the current position whose name
starts with name. If sensitive is TRUE, a case-sensitive character comparison is
made; otherwise, a case-insensitive comparison is performed. If the symbol is
found, this function returns TRUE and sets the new current position; otherwise,
this function returns FALSE.

int correct (Package& pkg, const char* name,
Boolean sensitive = FALSE, int* errors = NULL);

Performs spelling correction on a symbol whose name is name in the package pkg.
If sensitive is TRUE, a case-sensitive character comparison is made; otherwise, a
case-insensitive comparison is performed. This function returns the number of
matches and sets the current position of pkg to the best match found. The number of
corrections is provided in the optional errors argument.

friend ostream& operator<< (ostream& os, const Package& pkg);
Overloads the output operator for a reference to a package pkg to provide a format-
ted output capability for the Package class. This function returns a reference to the
output stream.

inline friend ostream& operator<< (ostream& os, const Package* pkg);
Overloads the output operator for a pointer to a package pkg to provide a formatted
output capability for the Package class. This function returns a reference to the
output stream.

DEFPACKAGE 11.6 The DEFPACKAGE macro enables a programmer to declare a program-wide

database of constant symbols with associated default values and properties. This is use-
ful when the programmer needs to set up a table of symbols and knows all instances and
requirements at compile time, as with the COOL ERR_MSG package discussed later in
this section. Under such circumstances, the run time overhead associated with the Pack-
age class is avoided. The package database (that is, the place where the constant sym-
bols are kept) is stored in a file on the include path. This file contains macro calls that
can be used in an application to associate data with compile-time symbols.

Symbols and Packages

11-5COOL User’s Manual

Boolean next ();
Advances the current position pointer to the next entry in the package and returns
TRUE. If the current position is invalid, this function advances to the first entry
and returns TRUE. If advancing past the last entry in the package, this function
invalidates the current position and returns FALSE.

Package& operator= (const Package& pkg);
Overloads the assignment operator for the class and assigns the package object to
have the value of pkg by duplicating the size and entries. This function invalidates
the current position of the package object.

Boolean operator== (const Package& pkg);
This function returns TRUE if the package object has the same symbol entries as
pkg; otherwise, this function returns FALSE.

inline Boolean operator!= (const Package& pkg);
This function returns TRUE if the package object has different symbol entries as
pkg; otherwise, this function returns FALSE.

Boolean prev ();
Moves the current position pointer to the previous entry in the package and returns
TRUE. If the current position is invalid, this function moves to the last entry and
returns TRUE. If moving to the previous entry passes the first entry in the package,
this function invalidates the current position and returns FALSE.

Boolean put (const char* name, Symbol& sym);
Searched for the symbol associated with name name and, if found, updates with the
new symbol sym. This function returns TRUE if successful; otherwise, this func-
tion returns FALSE. The current position is updated to the added entry sym.

Boolean remove ();
Removes the symbol at the current position, deallocates its storage, and returns
TRUE. This function sets the current position to the entry immediately following
the entry removed if in the same bucket; otherwise, this function invalidates the
current position. If the current position is invalid, an Error exception is raised and,
if the handler returns, this function returns FALSE.

inline Boolean remove (char* name);
Searches the package for the symbol name. If the symbol is found, this function
removes the symbol, deallocates its storage, sets the current position to the old lo-
cation of the symbol, and returns TRUE; otherwise, this function returns FALSE.

Boolean remove (Symbol* sym);
Searches the package for the symbol entry sym. If found, this function removes the
symbol, deallocates its storage, sets the current position to the old location of the
symbol, and returns TRUE; otherwise, this function returns FALSE.

inline void reset ();
Invalidates the current position.

void resize (long number);
Resizes the package for at least number entries. If a growth ratio has been selected
and it satisfies the resize request, the package grows by this ratio. This function
invalidates the current position. If the resize value is zero or negative, an Error
exception is raised.

Symbols and Packages

11-4 COOL User’s Manual

Package (unsigned long number, Package_Initializer fn);
Creates a package of constant symbols to hold at least number entries. Package_In-

itializer is a function of type void (Package_Initializer)(Package*) that allows the
programmer to perform an operation initializing a package object. This constructor
is primarily for use by the package macros. A detailed explanation of the macros
and construction of the symbol_package macro is provided in the paragraph enti-
tled, Symbol Package Implementation, at the end of this section below.

inline Package (Package& pkg);
Creates a new package, duplicating the size and values of another package object
pkg.

Member Functions: inline long capacity () const;
Returns the maximum number of entries the package can hold.

void clear ();
Removes all entries from the package and adjusts the appropriate counts.

inline Package_state& current_position () const;
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of package.

Boolean find (const char*& name);
Searches the package for a symbol whose name matches name. If found, this func-
tion sets the current position to the symbol matching the character string and re-
turns TRUE; otherwise, this function invalidates the current position and returns
FALSE.

Boolean get (const char*& name, Symbol& sym);
Searches the package for a symbol whose name matches name. If found, this func-
tion sets the current position to the symbol matching the character string, updates
sym with the symbol object found, and returns TRUE; otherwise, this function in-
validates the current position and returns FALSE.

inline Boolean get_key (const Symbol* sym, char*& name);
Searches the package for the name associated with the symbol sym. If found, this
function sets the current position to the symbol entry, updates name with name of
the symbol object found, and returns TRUE; otherwise, this function invalidates
the current position and returns FALSE.

Symbol* intern (const char* name);
Creates a new symbol object with the name name, or returns an existing symbol
with the same name. This function updates the current position to the new or exist-
ing entry.

inline Boolean is_empty () const;
Returns TRUE if the package contains no entries; otherwise, this function returns
FALSE.

const char*& key ();
Returns a reference to the character string name of the symbol at the current posi-
tion. If the current position is invalid, an Error exception is raised.

inline long length () const;
Returns the number of entries in the package.

Symbols and Packages

11-3COOL User’s Manual

inline Properties* plist ();
Returns a pointer to the property list associated with a symbol. Properties is an
object of type Association<Symbol*, Generic*>.

void put (const Symbol* name, Generic* value);
Looks up the named property name on the property list of the symbol object. If
found, this member function updates the value of the property with value; other-
wise, this member function adds a new property name with the value value. If this
is the first property added to the list, enough storage for four properties is allocated.

Boolean remove (const Symbol* name);
Looks up the named property name on the property list of the symbol object. If
found, this member function removes the property and returns TRUE; otherwise,
this member function returns FALSE.

inline Generic* set (Generic* value);
Sets the value associated with the symbol object to value and returns the new value.
The destructor for the old value is not called automatically.

inline Generic* value ();
Returns a pointer to the value associated with the symbol object.

Friend Functions: friend ostream& operator<< (const ostream& os,
const Symbol* name);

Overloads the output operator to provide a formatted output capability for a pointer
to a symbol object name.

friend ostream& operator<< (const ostream& os,
const Symbol& name);

Overloads the output operator to provide a formatted output capability for a refer-
ence to a symbol object name.

Package Class 11.5 The Package class acts as a symbol table for a collection of Symbol objects. It is

publicly derived from the Hash_Table<char*, Symbol*> class and implements a hash
table of symbols. The Package class includes public member functions for adding, re-
trieving, updating, and removing symbols. It also provides completion and spelling
correction on a symbol name (see the example programs later in this section).

Name: Package — A namespace for a collection of symbols

Synopsis: #include <COOL/Package.h>

Base Classes: Hash_Table<char*, Symbol*>, Generic

Friend Classes: Symbol

Constructors: inline Package ();
Creates a package object of default size to hold 24 entries.

inline Package (unsigned long number);
Creates a package to hold at least number entries.

Symbols and Packages

11-2 COOL User’s Manual

Symbol and 11.3 COOL supports efficient and flexible symbolic computing by providing

Package Classes symbolic constants and run time symbol objects. You can create symbolic constants at

compile time and dynamically create and manipulate symbol objects in a package at run
time by using any of several simple macros or by directly manipulating the objects.

The Symbol class implements the notion of a symbol that has a name with an optional
value and property list. Symbols are interned into a package, which is merely a mecha-
nism for establishing separate name spaces. The Package class implements a package
as a hash table of symbols and includes public member functions for adding, retrieving,
updating, and removing symbols.

Symbols and packages in COOL manage error message textual descriptions, provide
polymorphic extensions to C++ for object type and contents queries, and support so-
phisticated symbolic computing not normally available in conventional languages.

Symbol Class 11.4 The Symbol class implements the notion of a symbol that has a name with an

optional value and property list. The Symbol class is publicly derived from the Generic
class. Symbols are interned in a package, which is merely a mechanism for establishing
a namespace whereby there is only one symbol with a given name in a given package.
Packages are implemented as hash tables by the COOL Package class, which is a friend
of the Symbol class. Because each named symbol is unique within its own package, the
symbol can be used as a dynamic enumeration type and as a run time variable.

The name of a symbol is specified by a character string. The value of a symbol is speci-
fied as a pointer to a Generic object. The property list of a symbol is specified by an
Association<Symbol*,Generic*>, where the name of the property is a pointer to a
Symbol object and the value of the named property is a pointer to a Generic object.

Name: Symbol — Named, interned objects with a value and property list

Synopsis: #include <COOL/Symbol.h>

Base Classes: Generic

Friend Classes: Package

Protected
Constructors: inline Symbol (const char* name);

Creates a symbol object with the name name. This member function is for use by
the Package::intern member function. An application program should only create
symbols interned and associated with a specific package.

Public Constructors: inline Symbol ();
Applications should use the Package::intern member function to create symbols.
The public constructor is provided for use by COOL macros to create and initialize
constant symbols used for run time type query.

Member Functions: Boolean get (const Symbol* name, Generic* value);
Looks up the named property name on the property list of the symbol object. If
found, this member function copies the associated value into value and returns
TRUE; otherwise, this member function returns FALSE.

inline const char* name () const;
Returns a constant pointer to the name associated with a symbol object.

11-1COOL User’s Manual

SYMBOLS AND PACKAGES

Introduction 11.1 A package provides a relatively isolated namespace for various COOL compo-

nents called symbols. Those symbols grouped into a particular package are said to be
owned by that package. A symbol that is owned by a particular package is said to be
interned in that package. In general, the term interned means that a particular object is
uniquely identifiable in some context. When a symbol is interned, it becomes uniquely
identifiable by the symbol name within a namespace context. The package system pro-
vides logical groupings of symbols supporting relationships established between named
objects and the values they contain. Although the notion of symbols being grouped into
packages is fairly straightforward, the nature of the relationships that can exist between
packages and the way in which they establish a namespace can be quite complex. COOL
provides several kinds of macros discussed later in this section to simplify the usage and
manipulation of symbols and packages.

A symbol is a data object that defines a relationship between a name, a package, a value,
and a property list. The name is a character string used to identify the symbol. Once a
name is established for a symbol, you are not allowed to change it. The value field is
used to refer to some C++ object. Property lists are lists of alternating names and values.
The property list allows you to associate supplemental attributes with a symbol. In-
itially, the property list for a symbol is empty. This section discusses the symbolic com-
puting facilities provided with COOL. The following items are covered:

• Symbol

• Package

• DEFPACKAGE and DEFPACKAGE_SYMBOL

• Package macros

The Symbol and Package classes implement the basic symbolic computing support.
DEFPACKAGE and DEFPACKAGE_SYMBOL are flexible, low-level macros
used to create and manipulate symbols and packages at both compile time and run time.
Finally, the package macros discussed in the latter portion of this section provide a flex-
ible and easy interface to the symbol and package features and allow a programmer to
quickly use powerful constructs and features.

NOTE: The symbol and package classes use operator= when copying names and val-
ues. You should be careful when reusing memory, since the default pointer assignment
operator copies the pointer, not the value pointed at.

Requirements 11.2 This section discusses the symbol and package facilities of COOL. It assumes that

you have a working knowledge of the C++ language and have read and understood Sec-
tion 10, Macros.

Printed on: Wed Apr 18 07:12:35 1990

Last saved on: Tue Apr 17 13:33:25 1990

Document: s11

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

